
12 Copyright© 1998 ASME

actions on Systems, Man, and Cybernetics, SMC-22(2):224–
241, March/April 1992.

P. Chedmail and E. Ramstein. Robot mechanism synthesis
and genetic algorithms. InProceedings of the 1996 IEEE Inter-
national Conference on Robotics and Automation, pages 3466–
3471, 1996.

I. Chen and J. Burdick. Determining task optimal modular
robot assembly configurations. InProceedings of the 1995
IEEE International Conference on Robotics and Automation,
pages 132–137, 1995.

J. Craig.Introduction to Robotics: Mechanics and Control.
Addison-Wesley, 2nd edition, 1989.

S. Farritor, S. Dubowsky, and N. Rutman. On the design of
rapidly deployable field robotic systems. InProceedings of the
1996 ASME Design Engineering Technical Conferences and
Computers in Engineering Conferences, 1996.

D. Goldberg and K. Deb.Foundations of Genetic Algo-
rithms, chapter. A comparative analysis of selection schemes
used in genetic algorithms. Morgan Kaufmann, 1991.

L. Kelmar and P. Khosla. Automatic generation of forward
and inverse kinematics for a reconfigurable modular manipula-
tor system.Journal of Robotic Systems, 7(4): 599-619, 1990.

O. Khatib. Real-time obstacle avoidance for manipulators
and mobile robots.The International Journal of Robotics
Research, 5(1):90–98, Spring 1986.

J.-O. Kim.Task Based Kinematic Design of Robot Manip-
ulators. PhD thesis, Carnegie Mellon University, 1992.

J.-O. Kim and P. Khosla. Design of space shuttle tile ser-
vicing robot: An application of task-based kinematic design. In
Proceedings of the 1993 IEEE International Conference on
Robotics and Automation, pages 867–874, 1993.

J. Koza. Genetic programming: On the programming of

computers by means of natural selection. MIT Press, 1994.
J. Koza, F. Bennet, D. Andre, and M. Keane. Four prob-

lems for which a computer program evolved by genetic pro-
gramming is competitive with human performance. In
Proceedings of the 1996 IEEE International Conference on
Evolutionary Computation, 1996.

C. Leger. Automated synthesis and optimization of robot
configurations, Ph. D. Thesis Proposal. The Robotics Institute,
Carnegie Mellon University, 1997. Available on the WWW
from http://www.frc.ri.cmu.edu/~blah/papers/.

A. McCrea. Genetic algorithm performance in parametric
selection of bridge restoration robot. InProceedings of the 14th
International Symposium on Automation and Robotics in Con-
struction, pages 437–441, 1997.

D. Messuri and C. Klein. Automatic body regulation for
maintaining stability of a legged vehicle during rough-terrain
locomotion. IEEE Journal of Robotics and Automation,
1(3):132–141, 1985.

P. Muir. Modelling and Control of Wheeled Mobile Robots.
PhD thesis, Carnegie Mellon University, Dept. of Electrical and
Computer Engineering, 1988.

C. Paredis.An Agent-Based Approach to the Design of
Rapidly Deployable Fault Tolerant Manipulators. PhD thesis,
The Robotics Institute, Carnegie Mellon University, 1996.

G. Roston.Genetic Methodology for Configuration Design.
PhD thesis, The Robotics Institute, Carnegie Mellon University,
1994.

K. Sims. Evolving virtual creatures. In1994 Computer
Graphics Proceedings, pages 15–22, 1994.

11 Copyright© 1998 ASME

cating open chains; the method must be able to derive a forward
dynamic model (one which computes each link’s linear and ro-
tational velocity and acceleration given actuator forces) from a
description of a robot’s links and joints. One possible imple-
mentation would use a non-penetrating rigid body simulation
package (Baraff 1996), which would compute the motions of a
robot and the contact forces generated by collisions between the
robot and objects in its environment. This would simplify inter-
action between the robot and other objects (such as a robot
picking up a payload), since the physical simulation would di-
rectly model interactions between the robot’s tool and the envi-
ronment. Such a method could also compute contact forces
between a mobile robot’s locomotion system and the underly-
ing terrain, which may be useful for detecting tipover condi-
tions and simulating a robot’s propulsion system.

Optimizing Non-Kinematic Properties

One of the most important benefits of adding a dynamic
model to the simulator is the ability to optimize non-kinematic
properties of a robot. It is possible to include actuator size in a
module’s parameters, but the current system cannot model the
effects of actuator size on performance. A dynamic simulator
will allow us to model the effects of actuator saturation. If a ro-
bot has actuators which are undersized, its accuracy and speed
will be inferior to a robot with optimally sized actuators. On the
other hand, a robot with oversized actuators will be more ex-
pensive, and each oversized actuator may require that other ac-
tuators be made larger. An oversized actuator near the end of a
manipulator will put greater demands on actuators near the base
of the serial chain, thus either degrading performance or requir-
ing other actuators to be enlarged. By modeling the effects of
actuator size, the system should be able to optimize actuators in
the same way kinematic dimensions are optimized.

Another non-kinematic property that our system can poten-
tially optimize is the cross section of a manipulator’s links. In
the material handler example, we had to fix the dimensions of
several modules’ cross sections because the simulator could not
model the strength of differently-sized beams. If the simulator
could estimate a beam’s strength from its dimensions and com-
pute the forces and moments acting on the beam, it would be
able to detect failure of the beam. An undersized link would
thus cause a robot to fail at its task, while an oversized link
would increase the torque required from actuators. We believe
that each link’s cross section can optimized by extending the
simulator to compute beam strength and applied forces and mo-
ments.

Other Improvements

Terrain modeling is crucial for realistic simulation of many
mobile robot applications. The antenna pointing example used
a simple terrain model with sinusoidal profiles for left and right

wheel pairs. A more general terrain model is desirable for other
applications. Simulating attitude changes as a vehicle traverses
terrain is of primary importance; detailed modeling of soil in-
teraction may not be required for many tasks.

Another general area of improvement is motion planning
and control. In a kinematic simulation, a planner can predict the
outcome of a set of commands with high accuracy. A dynamic
simulation introduces uncertainty into planning unless the plan-
ner itself uses a dynamic model for prediction. This may prove
to be too computationally expensive; a better approach may be
to use a kinematic planner, but re-plan when error in plan exe-
cution exceeds a threshold.

The motion planner used for computing base motion in the
material handler example assumes a planar environment. Free-
flying robots and manipulators moving in cluttered workspaces
may also require motion planning, but in three dimensions.
While many algorithms exist such planning, we require a rea-
sonably efficient approach since tens of thousands of configura-
tions may be evaluated in a single synthesis run. Local,
Jacobian-based methods may be sufficient if the workspace
contains relatively few obstacles (Khatib 1986).

The current simulator does not prevent self-intersection,
and our current controller and planner do nothing to avoid it.
This should be remedied in future work. In some cases a link or
joint may need to be redesigned to avoid collision with another
part of the robot. While this can be done manually, doing so
may alter the optimality of a design and may require another
run of the synthesis process. It would be desirable for the sys-
tem to disallow self-intersection so that configurations can be
evolved which avoid it.

CONCLUSION
We have developed an extensible framework for robot con-

figuration synthesis. By combining a genetic optimization algo-
rithm with an object-oriented software architecture, we allow
new capabilities to be easily added to the system. The system
uses a flexible representation for robot configurations that can
allow mobile and fixed base robots including robots with mul-
tiple or branching manipulators and free-flying robots. A paral-
lel architecture for execution allows heavy computational loads
to be distributed across a heterogeneous network of computers.
We plan to make several important extensions to the system in-
cluding dynamic simulation, optimization of non-kinematic
properties, and effective optimization of multiple metrics.
These additions will bring the system closer to being a practi-
cal, general-purpose tool for robot configuration synthesis.

REFERENCES
D. Baraff. Coriolis Documentation, 1996.
J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical

potential field techniques for robot path planning.IEEE Trans-

10 Copyright© 1998 ASME

error. After rewriting the controller to fix the first bug (which
was an error in our formulation of the control task), we noticed
that the system again seemed to prefer a certain topology.
Again, the system produced acceptable designs, butall config-
urations with acceptable pointing error had the same topology
(the x-y mechanism in figure 6a), and we knew mechanisms of
the type in figure 6b should be able to complete the task, though
perhaps requiring higher joint velocities. After fixing a simple
but serious controller bug, the system did indeed produceaz-el
configurations for some tasks.

This example demonstrates the effect of controller bias: if
a controller happens to work best with one type of configura-
tion, then the optimization process will prefer configurations of
that type, even though the configurations are not inherently su-
perior. While the bias in our example was caused by program-
ming errors, it is possible for a bug-free controller or planner to
be biased towards certain configurations. A example of this is a
controller which does not deal well with a manipulator’s singu-
larities; the controller will be biased towards configuration
which, by chance, do not approach any singularities during task
execution.

A similar problem exists with respect to controllers and
tasks: a controller may have a bias towards a certain task or
metric. For example, the SRI controller implicitly and simulta-
neously optimizes error and joint velocity. A redundant manip-
ulator’s extra degrees of freedom can also be used to optimize
a function of the joint values; this can be used for joint limit
avoidance, for example. Using the SRI and avoiding joint limits
through redundancy is a combination well suited for accurately
following trajectories. However, if we are synthesizing a mobile
manipulator for a material handling task, stability (avoiding ti-
pover of the robot) could be more important than accuracy. Us-
ing a controller that tries to avoid joint limits but ignores
stability will cause the stability of some configurations to ap-
pear worse than it actually is. This type of controller bias is not
as serious, since it affects all configurations; its main impact is
that the results of the simulation may underestimate the true ca-
pabilities of a robot.

The synthesis process generates a multitude of configura-
tions, and a controller must be able to control them. Thus, we
can’t depend on having a well-optimized controller which
makes each configuration perform at the limits of its capabili-
ties. It is important to be aware of the potential impact that a
controller can have on the evaluation of a configuration. Per-
haps the best that one can hope for is a controller that preserves
relative performance between configurations: if configurationA
has measurably better performance than configurationB when
both configurations are controlled by optimal controllers, then a
general controller should ideally causeA to have better perfor-
mance thanB on a simulated task. This would ensure that con-
troller bias has minimal impact on the synthesis process.

Task-Specific Synthesis

The two examples take atask-specific approach: the system
evaluates each configuration with respect to a certain task, rath-
er than using inherent properties of each configuration. A dif-
ferent approach would be to evaluate a configuration’s
performance based on task-independent properties such as the
size of a manipulator’s dextrous workspace, the fraction of the
workspace that is close to a singularity, or the turning radius of
a mobile base. A general-purpose evaluation can be used in our
system by writing a new evaluator object, and may be useful
when synthesizing a general-purpose robot whose ultimate ap-
plications will vary widely.

The task-specific approach to synthesis is a two-edged
sword: it assumes that the simulated task is representative of the
application for which the robot will be used. If this assumption
is correct, then synthesis can result in a configuration that is op-
timized for the desired application. But if the task or metrics do
not characterize the end use of the robot, then the synthesis pro-
cess will not produce a well-optimized configuration Thus, the
designer must ensure that the task used in simulation accurately
reflects the intended use of the robot. If the desired result is a
general-purpose robot, the evaluation might consist of a number
of varied subtasks in an attempt to exercise many different ca-
pabilities of each configuration. For special-purpose robots, the
simulated task should be as close as possible to the real task. In
both bases, the designer needs to ensure not only that the task
is representative of the application, but that the metrics reflect
the important aspects of each robot’s performance. In summary,
the outcome of the system is heavily dependent on the evalua-
tion process specified by the designer.

FUTURE WORK

We plan to pursue a number of improvements and exten-
sions to out current synthesis framework. The first area of im-
provements lies in optimizing multiple metrics; our approach to
this was detailed earlier. Some other areas are:

• Extending the simulator to include dynamics
• Optimizing non-kinematic properties
• Adding a terrain model to the simulator
• Improving motion planning and control

Dynamic modeling

Our current system uses a kinematic simulator: joint veloc-
ities and accelerations can have arbitrary values. While this is
adequate for many tasks, the inclusion of dynamics into the
simulator will allow us to more accurately model a robot’s per-
formance on tasks where inertial and working forces are signif-
icant compared to the robot’s actuator forces. We require a
dynamic simulation method that can deal with arbitrary bifur-

9 Copyright© 1998 ASME

handler configuration can complete the task but another cannot,
the fact that the latter configuration has lower torque require-
ments is irrelevant. We should always select the first configura-
tion over the second. This can be implemented by letting the
designer write aconfiguration decision function(CDF) which
decides which of two configurations is best, based on their met-
rics. The CDF could be written in a simple interpreted lan-
guage, allowing changes to be made without requiring
recompilation of the population manager. The use of a designer-
specified CDF should speed convergence towards an acceptable
solution.

Using this method would require that we abandon fitness
proportionate selection, in which configurations are selected
with frequency directly related to their fitness. Two alternative
schemes arerank-based selection, in which the entire popula-
tion is sorted and configurations are selected based on their
rank; andtournament selection, in which two configurations are
chosen at random from the population and the better of the two
is reproduced (Goldberg and Deb 1991). Each of these uses di-
rect comparisons between solutions, which is what our design-
er-specified function provides.

Another way to intelligently optimize multiple metrics is to
decide which metric to use for fitness-proportionate selection
based on statistical properties of the entire population. For ex-
ample, if no configurations have completed the entire task, we
might want to optimize for task completion. But after all con-
figurations can complete the task, selecting based on task com-
pletion alone amounts to selection with uniform probability,
which will not produce any improvement.

One way of choosing which metric to use for selection is
to use a statistical feature such as variance to determine which
metric can best discriminate between good and bad configura-
tions at a given point in time. This turns out not to work very
well in our experience. One reason is that different metrics have
different ranges--sometimes by orders of magnitude. This is
true even though we use adjusted fitness, which is bounded be-
tween zero and one. Another reason is that fitness values often
do not follow a normal distribution. But the most important
cause of failure is that statistics do not capture the desires of the
designer. Different metrics have different priorities in the mind
of the designer; a standard deviation ofx may be meaningless
in one metric, but it may be the difference between acceptable
and unacceptable designs in another. A better solution might be
to let the designer write simple rules which are used for select-
ing metrics-- ametric decision function (MDF). For example, if
the average pointing error of a population is greater than the ac-
ceptable error, we might select configurations based on pointing
error. But once pointing error drops below acceptable levels, we
could select based on peak joint torque. The MDF approach
would still use fitness-proportionate selection, but should pro-
duce acceptable results more quickly and reliably than using a
weighted sum of metrics, or choosing a selection metric by sta-
tistical methods.

Both of the proposed approaches require the designer to
write a selection function. In the first case, the designer speci-
fies the function which decides which of two configurations is
best; in the second case, the designer’s function decides which
metric is best for selection. While we could have the designer
write these functions in C++ (the language used by the rest of
the system), we feel that it will be easier for the designer to
write the rules in a simple, interpreted language so that changes
can be made more easily.

We are not sure of the relative advantages and disadvantag-
es of the two approaches, so we will implement both of them
and decide which is more appropriate through experimentation.
Fortunately, we can use the same parsing code for both tech-
niques. The common UNIX utilitieslex andyacc can be used
to quickly build interpreters and compilers; we expect to use
these tools to write the interpreter. By allowing the designer to
tell the system how to select configurations in way that express-
es the particular needs of a design problem, we hope to improve
the ability of the system to robustly generate acceptable config-
urations.

Dependence on Planning and Control

The inherent qualities of each configuration generated by
the synthesis system are not the only factors which determine
the final result. If the metrics chosen by the designer do not re-
flect the important aspects of a robot’s performance, then the
system will not produce a configuration that is suited for the
task at hand. Similarly, if the designer chooses a set of modules
that cannot be assembled to produce any acceptable configura-
tion, the program clearly has no chance of generating a good
design.

A more serious problem is that the results of each evalua-
tion are dependent on the planning and control code used dur-
ing simulation. If a controller is poorly designed or is not free
of bugs, it may cause an acceptable design to perform poorly
(though it is unlikely to make an unacceptable design perform
well). Any planning or control algorithms used in the synthesis
system must be able to work with thousands or even millions of
different robot configurations; it is difficult to guarantee that an
algorithm (and more importantly, a specific implementation)
works correctly in all cases. Fortunately, it is not crucial that a
planner or controller works well with poorly-designed mecha-
nisms, since these would have little chance of being reproduced
even with a good planner. But a controller should be able to
successfully control any robot that can potentially complete the
task at hand in an acceptable manner.

We discovered two bugs in early versions of the controller
we used for the antenna pointing mechanism. The controller
could acceptably control certain topologies, but not others. The
result was that the synthesis process always produced designs
with that particular topology--many of which could complete
the pointing task with an acceptable level maximum pointing

8 Copyright© 1998 ASME

pointing error.

We performed several runs of the synthesis process, with
differing elevation angles in each (azimuth was not changed,
since the rover moves through 360 degrees of heading in each
run). For higher receiver elevations (45 through 90 degrees), the
Nomad-style chassis and x-y pointing mechanism shown in fig-
ure 6a consistently had the best performance. For a lower ele-
vation (20 degrees), the rocker-bogie chassis and azimuth-
elevation pointing mechanism shown in figure 6b were consis-
tently best. The reason for the difference in pointing mechanism
is that at high elevation angles, large joint velocities are re-
quired for small changes in pointing motion for the azimuth-el-
evation mechanism. The opposite is true at low elevation
angles. Additionally, the x-y pointing mechanism requires
much higher joint torques at low elevation angles.

It is not clear why the rocker-bogie chassis consistently
best for low elevation angles, or why the Nomad chassis per-
forms better for high elevations angles. For both the high- and
low-elevation cases, manually changing the base type of the
best configuration found by the synthesis program results in
slightly lower performance. Thus, it appears that the synthesis
process has optimally chosen the base type, although we are not
sure why one is better than the other. This is one drawback of
automated synthesis--it can sometimes be difficult to under-
stand why one design is better than another. When a human de-
signs a system, each modification is usually a deliberate attempt
to remedy a specific shortcoming. With an automated synthesis
program, we may not know how a particular design was arrived
at; we can only judge its performance.

ANALYSIS

Generality

The two optimization tasks described in the previous sec-
tion are significantly different from each other, but both are eas-
ily accommodated by the object-oriented architecture we have
chosen. It may seem that we are belaboring a minor implemen-
tation detail, but we believe that this architecture is crucial in
enabling a flexible tool to be developed. The reason for this is
simple: genetic optimization techniques treat the system being
optimized as a black box, which is one of the fundamental prin-
ciples of object oriented programming.

The modules, trajectory generators, metrics, and core eval-
uation procedures in the examples are all software objects. All
of the metrics share a common interface, as do all of the trajec-
tory generators, modules, and evaluators. The interface allows
the internals of each object to change without impacting the rest
of the system. For example, the genetic optimization process is
identical in the two problems: configurations are sent to evalu-
ators, which return the results of the evaluation in a standard-
ized form. Without the separation provided by these interfaces,
the system would require much more extensive modification for
each new optimization problem.

In some sense, our system is a toolkit: designers can build
a synthesis system to meet their needs from a set of reusable
components, adding new components when necessary. The end
result is a tool for synthesis. As more and more tasks are ad-
dressed, more components are added and the toolkit grows, ex-
panding the range of problems for which an appropriate
synthesis tool is quickly available.

Genetic approaches are very flexible in theory; in practice,
their flexibility is limited by the representation and evaluation
used in the optimization process. We are confident that our
framework for synthesis is general and extensible enough to en-
compass most, if not all, of the automated configuration synthe-
sis tasks addressed in previous research.

Optimizing Multiple Metrics

Perhaps the biggest deficiency in our current system is the
way multiple metrics are handled. Real design problems often
have multiple conflicting requirements, making trade-offs nec-
essary. At the minimum, there is usually a trade-off between
cost and performance. A simple average or weighted sum of
different factors is probably not the best way to capture a de-
sign’s requirements. This is demonstrated by the problems we
encountered in each of the examples: for the material handler
configuration, we had to scale all of the metrics by the square
of the path completion, and for the antenna pointing system we
had to select weights which emphasized achieving low pointing
error. In both cases, we simply desired to make one metric more
important than all of the others. For example, if one material

(a) (b)

Figure 6. The x-y pointing mechanism on the left has
better performance at high elevation angles, while the
azimuth-elevation mechanism on the right has better

performance at low elevations.

7 Copyright© 1998 ASME

piece telescoping booms, and an inline revolute joint. As with
the wheel diameter parameters, we forced some parameters of
the joints to be constant. The cross-section for each joint (and
for the single link module) was set to 0.4m x 0.4m. We did this
because this simulator doesn’t currently model the strength of
mechanical components. Thus, the only effect of varying a link
or joint’s cross section would be to change its weight. This in
turn would change the torque requirements for each actuator.
The end result would be that the smallest possible cross section
would be considered optimal, because the decreased strength of
a smaller cross section is not accounted for.

We chose a population size of 500; the initial population
was generated from an embryo configuration consisting of a set
of pallet forks attached directly to a mobile base. We used the
degree-of-freedom filter to allow only configurations with 3 or
4 degrees of freedom in the manipulator, and we limited the
maximum mass of a configuration to 15000kg. The best config-
uration from one run is shown in figure 5. This particular run
was halted after generating about 70,000 configurations. This
may seem like a lot of configurations, but it is tiny compared to
the size of the search space (which contains over 1013 configu-
rations in this example). This run occupied approximately 15
Silicon Graphics workstations for 9 hours. Out of 6 runs with
slightly varying run time and populations, 4 produced a config-
uration which could stably reach the entire path. All of these
were very similar to the configuration shown in figure 5; the
only differences were small variations in some parameter val-
ues.

The remaining two runs failed to produce configurations
which could complete the task. We believe this is due to way
multiple metrics were combined. We used four metrics in all
experiments: task completion, maximum joint torque, task exe-
cution time, and energy stability (how close a robot comes to
tipping over; see (Messuri and Klein 1985) for details). To com-
bine metrics into a single value when selecting configurations
for reproduction or deletion, we initially took the average of the
4 metrics’ normalized fitness values. This proved inadequate;
for example, a configuration which couldn’t even reach the first
point on the path might have excellent performance in terms of
joint torque. To emphasize the importance of task completion,
we tried scaling all of the other metrics’ adjusted values by the
square of the fraction of the task that was completed. This was
an ad hoc solution which seemed to help a bit, but it still did
not give the desired results all the time. In the runs that failed,
the population converged on solutions which could complete
about 70% of the task, and which had very good values for joint
torque and stability. When the occasional configuration was
created which could complete the task, its stability and torque
were substantially worse than the rest of the population, and so
it was eliminated.

While the evaluation process we used in this example had
several limitations, we feel it was useful as a proof of concept
and as an initial testbed for experimentation.

Example 2: An Antenna Pointing System

Another problem to which we have applied the system is
the configuration of a rover with an antenna pointing mecha-
nism. In the evaluation, the rover’s pitch and roll are computed
by a simple sinusoidal terrain model, and the rover’s heading
rate is constant so that after 30 seconds, the rover has complet-
ed a circle. A path object generates commands which try to
keep the antenna at a constant azimuth and elevation; these
commands are used by the SRI controller to generate joint ve-
locities.

We allowed the optimization process to vary the rover’s
base type (4-wheel with no suspension, 4-wheel with suspen-
sion similar to the Nomad rover (ref?), or 6-wheel rocker-bogie
suspension) and dimensions (wheelbase and wheel diameter),
and the pointing mechanism. We restricted the pointing mecha-
nism to 2 degrees of freedom. With these constraints, the search
space contains about 17 million configurations, though many of
these are functionally identical (for example, an elbow joint can
be rotated 180 degrees and still have the same function). Each
experiment ran until 20,000 configurations had been evaluated;
this represents about 0.1% of the search space. We ran the ex-
periments on approximately 20 SGI workstations; run time was
approximately 15 minutes. This is much shorter than in the pre-
vious example for two reasons: fewer iterations were required
to reach an acceptable solution (since the space of possible de-
signs is much smaller), and the time required to evaluate a con-
figuration is less (in the material handler problem, the
evaluation time was dominated by path planning computations).

We used five metrics for this problem: path completion (the
ability to achieve the desired pointing direction), peak joint ve-
locity, peak joint torque, maximum pointing error, and power
consumption for the pointing mechanism. A weighted sum was
used to combine multiple metrics into a single value used for
selection configurations for reproduction and deletion. Some
experimentation was required to determine the best set of
weights to use to ensure convergence on a design with low

Figure 5. The best configuration from one of the
experiments. This configuration was able to complete the

task while maximizing stability.

6 Copyright© 1998 ASME

each metric, updates the sum of the adjusted fitness over the en-
tire population. The population manager then computes thenor-
malized fitness for every metric of each configuration. The
normalized fitness is just the adjusted fitness divided by the sum
of adjusted fitness over the entire population. Probabilistically
selecting configurations in proportion to their fitness is called
fitness-proportionate selection, and one common method of se-
lection in genetic techniques.

When only one metric is used, we use a configuration’s ad-
justed fitness as the probability that the configuration is selected
for reproduction. When more than one metric is used (as is the
case in most real design problems), we use a weighted sum of
each metric’s normalized fitness. This is where the constantc in
the equation above is used--it allows us to bring the standard-
ized fitness for different metrics into a similar range, so that the
adjusted fitness for each metric will be similar. For example, if
one metric has standardized values ranging from 0 to 10000,
the adjusted values will usually be smaller than those for a met-
ric with standardized valued between 0 and 10. Ifc for the latter
metric is set to 1000, then the adjusted values will be in the
same general range.

We have just presented a high-level view of how the syn-
thesis system works. Next, we will look at two example synthe-
sis tasks which illustrate the operation of the system, and point
out some advantages and shortcomings.

EXAMPLES

Example 1: A Material Handling Robot

Material handlers are frequently used in construction sites
for transporting heavy loads over moderate terrain. A typical
material handler is shown in figure 3. To demonstrate the feasi-
bility of our approach, we applied the synthesis process to the
task of configuring a robot for a typical material handling task.
(This is discussed in more detail in (Leger 1997))

The task was to approach and pick up a 2500kg payload,
drive to another location, and raise the payload to a height of
6m. There are two small obstacles to negotiate. The robot is
controlled using the SRI controller while following each of the
two paths, and is controlled by a motion planner using numeri-
cal potential fields when moving between paths (Barraquand,
Langlois, and Latombe 1992). The motion planner is two di-
mensional: the obstacles are assumed to present a hazard only
to the base of the robot, not the manipulator. The payload is
modeled simply as a force acting on the end effector; it has no
geometric representation. The scenario and a manually-generat-
ed configuration are shown in figure 4. The system used nine
modules to create configurations: 3 base modules, 4 joint mod-
ules, one link, and one tool. The base modules were geometri-
cally identical, but had differing motion capabilities. The
Ackerman-steer base uses the front wheels to steer; the four-

wheel-steer base can articulate front and rear wheels indepen-
dently; and the Mecanum base is an omnidirectional, holonom-
ic base (Muir 1988). Each type of base presents an identical
interface to the motion planner, so that the same motion plan-
ning code can be used for all three base types. We set theconst-
flags for the base height and wheel diameter parameters, since
the evaluation process can’t make meaningful decisions about
these parameters using the current simulation. For example, the
bases are assumed to be moving in a flat plane in the simula-
tion, so varying wheel diameter has no meaningful effect on the
outcome of the evaluation.

The joint modules consisted of an elbow joint, 2- and 3-

Figure 3. A typical material handler

obstacles

path

second path

first

Figure 4. A manually generated configuration executing
the material handling task.

5 Copyright© 1998 ASME

computers. These tasks evaluate configurations and send the re-
sults back to the main process (called thepopulation manager),
which adds the configurations to the population. The population
that is kept during optimization consists entirely of configura-
tions that have been evaluated; the initial population is kept sep-
arate, and configurations are moved from the initial population
into the “working” population as the results of their evaluation
are returned. Whenever a configuration is added to the popula-
tion, one or two configurations are probabilistically selected for
reproduction (based on their performance). The offspring are
added to a queue of configurations to be evaluated. To keep the
population at a fixed size, configurations are probabilistically
removed from the population, with poorly-performing configu-
rations being removed more often than configurations that per-
form well.

This architecture is significantly different from that used in
a standard GA, but is similar to the one used by Paredis (Pare-
dis 1996). A normal GA evaluates all members of a population
and then generates a new population all at once. This is ineffi-
cient when evaluation is computationally intensive and thus
must be distributed across several computers, since many ma-
chines will sit idle while the last members of the population are
generated. The architecture we use can continually generate and
evaluate configurations, thus increasing efficiency.

Evaluating Configurations

The architecture described above relies on evaluator pro-
cesses to determine the performance of each configuration.
Each evaluator task consists of two parts: the core evaluation
code which measures a configuration’s performance, and a shell
which provides the interface between the core and the popula-
tion manager. This separation allows the core to be modified to
suit the task at hand. For example, a rover and an industrial ma-
nipulator would be evaluated in vastly different ways. An ob-
ject-oriented approach allows us to define a standard interface
between different parts of the system, so that various pieces can
be replaced with problem-specific code without impacting the
rest of the system. In the case of the evaluator, the interface is
simple: the evaluator takes a configuration and set of metrics as
input, and produces performance measures for each of the met-
rics as output.

In our system, the evaluation is based on simulation. While
it is possible to incorporate heuristic evaluations into our sys-
tem, we feel that simulation is a much more accurate method of
evaluation and the benefits of simulation outweigh the in-
creased computational cost. In order to simulate a robot, the ro-
bot must be controlled. To make this possible, we have
implemented a set of primitives that can be used by an evalua-
tor to control a robot in simulation.

Each configuration can compute a Jacobian for its base and
serial chains (Leger 1997). Each configuration is a software ob-
ject and contains not only the list of modules comprising the ro-

bot, but also algorithms to support various operations such as
computing the Jacobian.) The Jacobian can be used in conjunc-
tion with the Singularity Robust Inverse, or SRI (Kelmar and
Khosla 1990) to generate joint velocities which cause the ro-
bot’s endpoint(s) to follow a desired path in space. Each end-
point of the robot can have a path object associated with it,
which generates cartesian-space velocity commands. Again, the
path object has a standard interface allowing task-specific paths
to be substituted for more general ones. For example, the tip of
each leg of a walker, a manipulator doing assembly operations,
and a manipulator pointing an antenna all follow paths generat-
ed by completely different means, yet each of these paths can
be followed by using the SRI controller. Like other objects, the
SRI controller can be easily replaced if a particular task re-
quires a different control algorithm.

We are currently using a kinematic simulation: joint accel-
erations and velocities may be set to arbitrary values. It would
be more accurate (and computationally expensive) to use a dy-
namic simulation in which the robot is controlled by specifying
joint torques and forces, but this has not yet been implemented.
Even though the simulation is kinematic, joint torques can be
estimated using the computed torque method (Craig 1989).
These estimates are useful for comparing different configura-
tions, but are not physically accurate for small joint torques
since friction is not currently accounted for.

The designer can specify one or more metrics to measure
the performance of different configurations. Some metrics, such
as task execution time or the fraction of a task completed, are
only used at the end of the evaluation; others, such as power or
stability (for a mobile robot) are state-dependent and are mea-
sured at each time step of the simulation. Each metric can con-
vert its raw value intostandardized fitness, which is a value
ranging from 0 to positive infinity, with zero being best. State-
dependent metrics generate a vector of values; to collapse these
into a single measurement, the designer can specify that the
minimum, maximum, integral, average, or root-mean-square
value of the measurements is used. This value is then converted
to standardized fitness. In our system,adjusted fitness is com-
puted from standardized fitness as follows:

wherea is the adjusted fitness,s is the standardized fitness, and
c is a scale factor, which is used to normalize fitness values be-
tween different metrics (we will discuss this later).

The adjusted fitness ranges from 0 to 1, with 1 being best.
We use the adjusted fitness for two reasons: it is bounded, and
it magnifies differences between good configurations. (See (Ko-
za 1994) for a more detailed explanation.)

After evaluating a configuration, each metric computes its
standardized and adjusted fitness values and the evaluator sends
the results back to the population manager. The population
manager enters the configuration into the population and, for

a
1

1 c s×+
--------------------=

4 Copyright© 1998 ASME

rations, similarly to the way a human embryo receives genetic
information from two parents at conception. In our system,
there are actually two types of crossover. The first type is called
the module crossover operator, and works by exchanging sub-
graphs between two parent configurations to create two new
child configurations. A crossover point is chosen in each parent,
and two children are created by exchanging modules that occur
after the crossover point in each parent. This process is shown
graphically for a simple example in figure 2. The other type of
crossover operator isparameter crossover, which creates two
offspring by exchanging parameter information between similar
modules in two parent configurations. Two modules of the same
type are chosen, one in each parent. A bit string for each parent
module is formed; there is an entry in the bit strings for each
parameter that is variable (i.e. the parameter’sconst-flag is not
set) inboth modules. A crossover operation is then performed
on the bit strings so that parameter information is exchanged
between the two configurations.

The other general class of genetic operations is mutation.
Mutation plays a small but important role in genetic methods:
it prevents the population from becoming completely uniform.
As the optimization process progresses, the population im-
proves by converging on a relatively small area of the search
space. This necessarily means that the population becomes less
diverse; some parts of different configurations may be identical
throughout most or all of the population. Mutation introduces
small changes which allow the optimization to explore slightly
different, and possibly better, configurations. When the popula-
tion is highly fit (or well adapted to the task at hand), most mu-
tations are likely to be detrimental. However, they can expand
the search space beyond that which would be explored by
crossover alone, and this can occasionally be beneficial. Muta-
tion is not very useful in the early stages of optimization, since
the population is often very diverse.

We have implemented several mutation operators. Thein-
sertion operator inserts a link or joint module into the configu-
ration. Thedeletion operator deletes a non-terminal module (i.e
any module other than the base or end of a serial chain). The
replacement operator replaces a module with another of similar
type. Theparameter mutation operator randomizes a single pa-
rameter value in a configuration. Finally, theattachment muta-
tion operator randomizes the twist parameter of an attachment
between modules. Both the mutation and crossover preserve pa-
rameters and attachments which have theirconst-flagsset. We
include theconst-flag in the representation to allow the designer
to specify some known properties of the design. For example,
if a certain task requires a particular sequence of joint modules
for a wrist and a specific end effector, but the rest of the manip-
ulator is undetermined, the designer can create an embryo con-
figuration (from which the initial population is generated) and
set theconst-flags for the wrist modules’ parameters and con-
nectors. This will ensure that all configurations that are gener-
ated contain the desired wrist and end effector.

The Optimization Process

Using the representation and operators described above, we
can generate new configurations from old ones. This allows us
to take the first step in the optimization process: generating the
initial population. The designer specifies one or more embryo
configurations, as mentioned above. These configurations can
be trivial: in the case that the designer does not wish to specify
any particular modules or parameters, the embryo can simply
be an end effector attached directly to a base. In the scenario
described in the previous section, the designer would create an
embryo having the wrist and tool modules attached to the base.

The initial population starts with the embryo(s). A config-
uration is selected at random, and one or more genetic operators
are applied to generate a new configuration, which is then add-
ed to the population. This process continues until the initial
population reaches a desired size. ..

Several filters can be used to limit the breadth of the initial
population. The designer can specify a minimum and maximum
number of degrees of freedom to limit the complexity of the
configurations, or a mass filter to limit the size. If the embryos
have branching serial chains, an endpoint filter can be used to
ensure that each configuration has a certain number of end-
points. (While no possible application of the genetic operators
to a single serial chain can create a branching chain, if a con-
figuration has multiple serial chains it is possible for the off-
spring to have more serial chains, and thus more endpoints,
than the parent.) These filters are applied during the entire op-
timization process, not just while generating the initial popula-
tion.

After creating the initial population, the optimization pro-
cess begins. Configurations from the initial population are sent
over a network toevaluator tasks running on a number other

before crossover

after crossover

Figure 2. The module crossover operation. Two parent
configurations are shown at top, with the crossover points
shown as bold dashed lines. After the crossover, the child
on the left contains the first two modules of the left parent
and the last two of the right. The child on the right contains
the first module from the right parent and the last module

from the left parent.

3 Copyright© 1998 ASME

Representation

The genetic optimization process requires a suitable repre-
sentation for the objects being optimized--robot configurations,
in this case. We represent a robot configuration as a set of con-
nected modules. Each module represents a part of the robot; a
module might be a link, a joint, an entire arm, a mobile base,
or any other component of a robot. It is important to note that
the modules are used only for synthesis. The final robot is not
necessarily built from modular parts, though this can be accom-
modated with no modifications to our system.

Each module may have an arbitrary number of parameters
which describe properties of the module. Most parameters de-
scribe the various dimensions of a particular module type, but
parameters may also be used to describe non-kinematic proper-
ties such as the size of an actuator or the thickness of a link’s
structural members. This allows arbitrary properties of a mod-
ule to be modified and evaluated. Each parameter has a number
of components. The minimum and maximum value can be
specified by the designer to limit the variation in a parameter. A
const-flag can be set to indicate that the parameter’s value
should not be modified by any genetic operations. The resolu-
tion of each parameter’s possible values can also be set. Finally,
each parameter has a bit-string value (used by genetic opera-
tors) and a floating-point value (the actual value of the property
represented by the parameter).

Modules may have any number of connectors. These allow
multiple modules to be attached to each other to create config-
urations. Each connector is a coordinate frame attached to the
module’s geometry. When connecting two modules via their
connectors, the two connector’s coordinate frames are aligned
in a regular way to determine the spatial relationship between
the modules. Each connection between modules has two parts:
a twist parameter determining the angle of rotation about the
connector, and aconst-flag, indicating whether the connection
may be modified by genetic operations.

As mentioned above, configurations are composed of a set
of connected modules. Each configuration is represented as a
list of modules, with the base module first. Each module can
specify a connection to a module that comes later in the list. In
more specific terms, the configuration is stored as a topological-
ly sorted, directed acyclic graph. Each node in the graph is a
module, and each edge is a connection between modules.

This representation allows a variety of configurations to be
represented. A single fixed-base manipulator can be represented
as a series of link and joint modules. A rover might be repre-
sented by a single base module with parameters for various di-
mensions. More complex robots, such as a free-flying robot
with multiple, branching manipulators or a walking machine
with numerous legs, can also be represented. In these cases,
symmetry between different arms and legs can be preserved in
a straightforward manner: instead of storing a copy of each ap-
pendage in the list of modules, a single copy is stored and is

referenced multiple times. Thus, a robot with two identical ma-
nipulators would have a base and a series of several modules
representing one arm. The base module would have two con-
nections to thesame module--the first module in the arm. When
the robot’s geometric representation is created for evaluation
purposes, two copies of the arm are generated and attached to
the two connectors on the base. This process is shown in figure
1.

What sort of configuration can’t be represented in this
scheme? Robots with closed kinematic chains spanning multi-
ple modules. For example, we cannot represent a robot with
two manipulators that are permanently attached at the tips.
However, a closed kinematic chain within a single module, such
as the linearly-actuated revolute joint commonly found in hy-
draulic machines, can be represented. In this case, the module
must “know” how to ensure its internal consistency.

We make extensive use of object-oriented programming in
our system. (Briefly, object-oriented programming is a para-
digm wherein software objects consist of both instructions and
data, and present an interface to the rest of the system. Objects
can thus be treated as black boxes--other parts of the system
don’t need to know what goes on inside an object.) This allows
each module to handle its own special needs while providing a
uniform interface to the rest of the system. This means that
software for specialized modules, such as a mobile base or the
linearly-actuated rotary joint mentioned above, can be incorpo-
rated without impacting other parts of the system. The combi-
nation of object-oriented programming with a genetic approach
to optimization is quite powerful and allows the system to be
easily extended in many ways, as we will discuss in a later sec-
tion.

.Genetic Operators

We have just described the representation of configura-
tions; now we will discuss how this representation is used. The
genetic optimization process creates new configurations by us-
ing a set of genetic operators, which are analogous to the ac-
tions that create new genetic material in nature. The crossover
operator creates a new configuration from two parent configu-

Instantiation

Figure 1. During creation of a configuration’s geometry,
multiple references to a module result in multiple copies of

the subgraph rooted at the module.

2 Copyright© 1998 ASME

RELATED WORK
Existing work in automated synthesis for robots has fo-

cused on configuration synthesis rather than detailed electrome-
chanical design. Much of this research addresses the problem of
configuration a robot from a set of self-contained modules.
Paredis (Paredis 1996) uses a distributed, agent-based genetic
algorithm (GA) to create fault tolerant serial chain manipulators
from a small inventory of link and revolute joint modules. Each
configuration is evaluated kinematically on a satellite retrieval
task.

Farritor et al (Farritor, Dubowsky, and Rutman 1996) pro-
pose a methodology for modular mobile robots. Much of their
work focuses on quickly pruning the space of robot configura-
tions to a manageable number through the use of “kits” (groups
of types of parts) and fast heuristic evaluations.

Chen and Burdick (Chen and Burdick 1995) propose a
method for determining an optimal configuration of modular
links and joints. An Assembly Incidence Matrix (AIM) is used
to represent serial chain manipulators; it is a matrix representa-
tion of the mechanism graph. A GA is used to determine the
optimal assembly based on how many of a small number of
task points are reachable by each assembly. Chedmail and
Ramstein (Chedmail and Ramstein 1996) use a genetic algo-
rithm to determine the base position and type (one of several
manipulators) of a robot to optimize workspace reachability.

McCrea (McCrea 1997) discusses the application of genet-
ic algorithms to the selection of several parameters of a manip-
ulator used in bridge restoration. Direct calculation of the
robot’s inverse kinematics is possible due to the limited search
space: two possible shoulder joints and two possible wrist
joints.

Kim and Khosla (Kim 1992), (Kim and Khosla 1993) use
a genetic algorithm to synthesize the kinematic parameters of a
spatial manipulator with revolute joints and links modeled by
line segments. A multi-stage optimization process first chooses
the number and orientation of joints, then link lengths and joint
angels for a small number of points along a trajectory. Con-
straints are gradually enforced to ensure continuity between
task points, and then a kinematic controller generates joint an-
gles for intermediate task points.

Roston (Roston 1994) uses a GA to create a 2D general-
ized frame walker, which is evaluated on simulated terrain.
Motion plans are evolved concurrently with each mechanism,
and a second GA is used to set the parameters for the first GA.

Sims (Sims 1994) uses a genetic approach to evolve virtual
creatures and their behaviors. The creatures are represented ge-
netically by directed, cyclic graphs and each link of the creature
contains sensors and artificial neurons which create behaviors.
The creatures are tested in a dynamic (as opposed to kinematic)
environment in which they must swim, hop, and walk towards
various goals (such as a light source).

Koza et al (Koza, Bennet, Andre, and Keane 1996) use ge-
netic programming to evolve programs which modify a simple

analog circuit to create a variety of filters. Although computa-
tionally expensive, the process creates filters with performance
superior to those designed by humans. This work is important
because it is a practical application of genetic techniques to a
complex engineering task.

SYSTEM OVERVIEW

As mentioned above, our system is based on Genetic Pro-
gramming (GP). Genetic Programming and its simper ancestor
the Genetic Algorithm (GA) are based on two biological phe-
nomena: natural selection and sexual recombination. In a GA,
possible solutions to a problem are represented as bit strings.
The GA maintains a population of bit strings, and reproduces
them preferentially based on the quality of the solutions they
represent; this is analogous to natural selection. Reproduction is
performed by the crossover operator, which produces an off-
spring solution by combining parts of two parent solutions--this
simulates sexual recombination. The quality of solutions in the
population improves over time, since good solutions are repro-
duced more frequently than bad solutions. GP is similar, but
represents possible solutions as program trees instead of bit
strings. Each program can be directly evaluated simply by exe-
cuting it.

Genetic approaches do not need to rely on problem-specific
features. They have two basic requirements: possible solutions
should be represented in a way such that two parents can be
combined to yield an offspring, and a method of evaluating so-
lutions must be supplied. The actualmeaning of a bit string is
or program tree is irrelevant, as are the internals of the evalua-
tion method. This makes them more flexible than analytic opti-
mization methods. Genetic approaches have been shown to
effectively deal with large, high-dimensional, and non-linear
search spaces.

These properties make genetic approaches attractive for
synthesis. As long as we can represent configurations, combine
them to create new configurations, and somehow evaluate them,
a genetic approach should be able to generate a configuration
that is suited for a task.

Unfortunately, we must say “should” rather than “will” in
the preceding sentence. One drawback to genetic methods is
that there is no guarantee that an acceptable solution will be
found (assuming one exists). For example, genetic methods are
not very good at “finding a needle in a haystack” If there are
only a few acceptable solutions in a very large space of possible
solutions, and the unacceptable solutions do not improve much
as they become similar to an acceptable solution, then the ge-
netic algorithm will be unlikely to find a good solution. Despite
the lack of any guarantee of success, the advantages of genetic
approaches have enabled them to be successfully used for a va-
riety of applications, and we believe they are well suited for
synthesis.

1 Copyright© 1998 ASME

Automated Synthesis and Optimization
of Robot Configurations

ABSTRACT
We present an extensible system for synthesizing and opti-

mizing robot configurations. The system uses a flexible repre-
sentation for robot configurations based on parameterized
modules; this allows us to synthesize mobile and fixed-base ro-
bots, including robots with multiple or branching manipulators
and free-flying robots. We use an optimization algorithm based
on genetic programming. A distributed architecture is used to
spread heavy computational loads across multiple workstations.
We take a task-oriented approach to synthesis in which robots
are evaluated on a designer-specified task in simulation; flexible
planning and control algorithms are thus required so that a wide
variety of robots can be evaluated. Our system’s extensibility
stems from an object-oriented software architecture that allows
new modules, metrics, controllers, and tasks to be easily added.
We present two example synthesis tasks: synthesis of a robotic
material handler, and synthesis of an antenna pointing system
for a mobile robot. We analyze several key issues raised by the
experiment and show several important ways in which the sys-
tem can be extended and improved.

INTRODUCTION
Computer-Aided Design (CAD) tools are now in wide-

spread use in many areas of engineering. This simplest CAD
programs function as electronic drafting tools; more capable
programs exist for simulating and even synthesizing complex
devices. Synthesis tools of varying scope have been available
for years to circuit designers; we hope to develop similar tools
for the design of robots. Specifically, we are pursuing a meth-
odology for synthesizing and optimizing a robot configuration
for a given task. The configuration of a robot can be roughly de-
scribed as the properties of the robot that are discernible by an

observer: the topology and dimensions of the robot’s links and
joints. In the case of a mobile robot, the configuration includes
the robot’s locomotion system. Choosing a robot’s configura-
tion is the first step in designing a robot; the detailed electrome-
chanical design cannot be done until the configuration is
known. We feel that configuration synthesis and optimization is
amenable to automation, and that a capable synthesis tool will
be of use to the robot designer.

Automated synthesis tools for configuring robots offer
many potential benefits. They can:

• quickly generate feasible designs

• explore many more alternative designs than a human de-
signer

• allow rapid design and testing of robot configurations, and

• optimize configurations for complex tasks

A practical synthesis tool for configurations should have
several general properties. It should be flexible, so that a wide
range of design problems can be addressed. It should be com-
putationally tractable, allowing synthesis of non-trivial configu-
rations. Finally, the tool should produce feasible configurations.

The system we present attempts to address these require-
ments. Briefly, we use an approach based on Genetic Program-
ming (Koza 1992) to generate and optimize robot
configurations. The performance of each configuration is evalu-
ated through simulation or by analytic methods. Flexible plan-
ning and control algorithms allow many different configurations
to be evaluated in simulation. The approach is extensible in
many ways, enabling new tasks, robot types, and methods of
evaluation to be incorporated.

Chris Leger
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Email: blah@cmu.edu

John Bares
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
Email: bares@rec.ri.cmu.edu

Proceedings of DETC’98
1998 ASME Design Engineering Technical Conference

